函式fxxx3cosx在x0處的導數存在

2021-05-18 05:52:38 字數 5010 閱讀 4099

1樓:匿名使用者

鋸完了就一來次一次換藥源,開啟傷口那種疼,不是皮肉不是腸腸肚肚疼,是疼在

骨髓。牙不行了,就是那時候咬的,抓住什麼都塞到嘴裡咬。那次還算清楚,睜了

一下眼一看是把王一媛**的手給咬住了,幸虧睜了一下眼,要不,就把人家的手

咬爛了。

2樓:趙靈你好

三次 x最高4次冪,但由於有絕對值,所以存在正負問題,當導數中不存在x的冪次時有正負常數的區別,所以左右到數值不想等。

函式f(x)=x^3|x|+cosx在x=0處的導數存在的最高階數是

3樓:波波球

主要討論在抄x=0+和0-處f(x)及其已bai經存在的各階導數du的左右導數的存在zhi性即可(有點繞口)dao

1、lim(f(x)-f(0))/x=0

lim(f(x)-f(0))/x=0

==>x=0處一階導數存在f'(0)=0;

2、f'(x)=4x^3-sinx, x>=0f'(x)=-4x^3-sinx, x<0lim(f'(x)-f'(0))/x=-1lim(f'(x)-f'(0))/x=-1==>x=0處二階導數存在f''(0)=-13、f''(x)=12x^2-cosx, x>=0f''(x)=-12x^2-cosx, x<0lim(f''(x)-f''(0))/x=0lim(f''(x)-f''(0))/x=0==>x=0處三階導數存在f'''(0)=04、f'''(x)=24x+sinx, x>=0f'''(x)=-24x+sinx, x<0lim(f'''(x)-f'''(0))/x=25lim(f'''(x)-f'''(0))/x=-25==>左右導數不相等,於是x=0不存在四階導數即x=0處最高存在三階導數

dy/dx是什麼意思?

4樓:不是苦瓜是什麼

第一種理解:dy/dx 中的d是微小的增

量的意思,也就是指微小的增量y除以微小的增量x,在函式中是 微分的意思。

第二種理解:dy/dx可以理解為y對x求導,也可以理解為微商,即微分的商。

微分在數學中的定義:由函式b=f(a),得到a、b兩個數集,在a中當dx靠近自己時,函式在dx處的極限叫作函式在dx處的微分,微分的中心思想是無窮分割。微分是函式改變數的線性主要部分。

微積分的基本概念之一。

導數是函式的區域性性質。一個函式在某一點的導數描述了這個函式在這一點附近的變化率。如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函式所代表的曲線在這一點上的切線斜率。

導數的本質是通過極限的概念對函式進行區域性的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。

不是所有的函式都有導數,一個函式也不一定在所有的點上都有導數。若某函式在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函式一定連續;不連續的函式一定不可導。

對於可導的函式f(x),x↦f'(x)也是一個函式,稱作f(x)的導函式(簡稱導數)。尋找已知的函式在某點的導數或其導函式的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運演算法則也**於極限的四則運演算法則。

反之,已知導函式也可以倒過來求原來的函式,即不定積分。微積分基本定理說明了求原函式與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。

導數(derivative)是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。

5樓:匿名使用者

y=f(x)。dy/dx表示y對x求導。求2階導,就是dy/dx求導,即【d(dy/dx)】/dx=(d方y)/(dx方)

6樓:ixy222樓

那肯定是有相關的數值代替他的,這是一個未知數,可以用相關的數值等價交替。

7樓:匿名使用者

這是微積分中的一種運算方式 它是指未知變數x與未知因變數y的關係 它通過與導數的轉換能求得它們與整體的關係

8樓:花花大黃哥

1、dx、dy中的d,都是一個意思,都是無窮小的意思;無窮小=infinitesimal;

2、有限小的增量我們用△表示,如△x是x的有限小增量,讀成delta x;

3、當增量為無窮小時,我們就寫成dx、dy、dz等等;

4、dy/dx是兩個無窮小的增量之比,我們稱為導數,早年翻譯成「微商」,很傳神;

5、積分中的dx依然是一個無窮小,是一個細高的矩形的底寬,f(x)為矩形的高,

f(x)dx就是這個細高的長方形的體積,我們稱為體積元;

9樓:楊必宇

dy是y因為x變化而變化的線性主部,沒有圖不容易解釋線性主部這個詞的含義,就是說dy是delta y的一部分,最終,dy/dx就是y的線性增量除以x,所以正好就是一條曲線的切線。

假設:有一函式y=f(x),在x=x0時,x值增加一微小的量dx,那麼其相應的y0處的值的增量就用dy來表示,而用dy/dx(x=x0)。

就可以表示函式y=f(x)在x0處的斜率.同樣的dy/dx我們用它來表示函式y=f(x)的斜率的表示式。

dy/dx可以理解為y對x求導,也可以理解為微商,即微分的商。

dy/dx 中的d是微小的增量的意思,也就是指微小的增量y除以微小的增量x,在函式中是 微分的意思。

微分和導數有什麼區別

10樓:綠鬱留場暑

導數和微分的區別

一個是比值、一個是增量。

1、導數是函式影象在某一點處的斜率,也就是縱座標增量(δy)和橫座標增量(δx)在δx-->0時的比值。

2、微分是指函式影象在某一點處的切線在橫座標取得增量δx以後,縱座標取得的增量,一般表示為dy。

擴充套件資料:

設函式y = f(x)在x的鄰域內有定義,x及x + δx在此區間內。如果函式的增量δy = f(x + δx) - f(x)可表示為 δy = aδx + o(δx)(其中a是不隨δx改變的常量,但a可以隨x改變),而o(δx)是比δx高階的無窮小(注:o讀作奧密克戎,希臘字母)那麼稱函式f(x)在點x是可微的。

且aδx稱作函式在點x相應於因變數增量δy的微分,記作dy,即dy = aδx。函式的微分是函式增量的主要部分,且是δx的線性函式,故說函式的微分是函式增量的線性主部(△x→0)。

通常把自變數x的增量 δx稱為自變數的微分,記作dx,即dx = δx。於是函式y = f(x)的微分又可記作dy = f'(x)dx。函式因變數的微分與自變數的微分之商等於該函式的導數。

因此,導數也叫做微商。

當自變數x改變為x+△x時,相應地函式值由f(x)改變為f(x+△x),如果存在一個與△x無關的常數a,使f(x+△x)-f(x)和a·△x之差是△x→0關於△x的高階無窮小量,則稱a·△x是f(x)在x的微分,記為dy,並稱f(x)在x可微。一元微積分中,可微可導等價。

記a·△x=dy,則dy=f′(x)dx。例如:d(sinx)=cosxdx。

微分概念是在解決直與曲的矛盾中產生的,在微小區域性可以用直線去近似替代曲線,它的直接應用就是函式的線性化。微分具有雙重意義:它表示一個微小的量,因此就可以把線性函式的數值計算結果作為本來函式的數值近似值,這就是運用微分方法進行近似計算的基本思想。

推導設函式y = f(x)在某區間內有定義,x0及x0+△x在這區間內,若函式的增量δy = f(x0 + δx) − f(x0)可表示為δy = aδx + o(δx),其中a是不依賴於△x的常數, o(δx)是△x的高階無窮小,則稱函式y = f(x)在點x0是可微的。

aδx叫做函式在點x0相應於自變數增量△x的微分,記作dy,即:dy=aδx。微分dy是自變數改變數△x的線性函式,dy與△y的差是關於△x的高階無窮小量,我們把dy稱作△y的線性主部。

得出: 當△x→0時,△y≈dy。

導數的記號為:(dy)/(dx)=f′(x),我們可以發現,它不僅表示導數的記號,而且還可以表示兩個微分的比值(把△x看成dx,即:定義自變數的增量等於自變數的微分),還可表示為dy=f′(x)dx。

[4]

幾何意義

設δx是曲線y = f(x)上的點m的在橫座標上的增量,δy是曲線在點m對應δx在縱座標上的增量,dy是曲 線在點m的切線對應δx在縱座標上的增量。當|δx|很小時,|δy-dy|比|δx|要小得多(高階無窮小),因此在點m附近,我們可以用切線段來近似代替曲線段。

11樓:王王王小六

1、定義不同

導數又名微商,當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數。

微分在數學中的定義:由函式b=f(a),得到a、b兩個數集,在a中當dx靠近自己時,函式在dx處的極限叫作函式在dx處的微分,微分的中心思想是無窮分割。微分是函式改變數的線性主要部分。

2、本質不同

導數是描述函式變化的快慢,微分是描述函式變化的程度。導數是函式的區域性性質,一個函式在某一點的導數描述了這個函式在這一點附近的變化率。而微分是一個函式表示式,用於自變數產生微小變化時計算因變數的近似值。

3、幾何意義不同

導數的幾何意義是切線的斜率,微分的幾何意義是切線縱座標的增量。因此微分可以用來做近似運算和誤差估計。最簡單的一元情況下,導數是一個確定的數值,幾何意義是切線斜率,物理意義是瞬時速度。

12樓:匿名使用者

(1)起源(定義)不同:導數起源是函式值隨自變數增量的變化率,即△y/△x的極限。微分起源於微量分析,如△y可分解成a△x與o(△x)兩部分之和,其線性主部稱微分。

當△x很小時,△y的數值大小主要由微分a△x決定,而o(△x)對其大小的影響是很小的。

(2)幾何意義不同:導數的值是該點處切線的斜率,微分的值是沿切線方向上縱座標的增量,而△y則是沿曲線方向上縱座標的增量。可參考任何一本教材的圖形理解。

(3)聯絡:導數是微分之商(微商)y' =dy/dx, 微分dy=f'(x)dx,這裡公式本身也體現了它們的區別。

(4)關係:對一元函式而言,可導必可微,可微必可導。

急求證明 設g x 在x0處連續,則函式f xx xg x 在x0處可

依題zhi意,f x0 0 lim x daox0 f x f x0 x x0 lim x x0 f x x x0 lim x x0 x x0 g x x x0 lim x x0 g x g x0 lim x x0 f x f x0 x x0 lim x x0 f x x x0 lim x x0 x...

若函式f(x)在x0處不可導,則函式f(x)在x0處不存在切線

如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函式所代表的曲線在這一點上的切線斜率。所以不可導就沒有切線。可導一定連續 證明 函式f x 在x0處可導,f x 在x0臨域有定義,對於任意小的 0,存在 x 1 2f x0 0,使 f x0 x f x0 這可從導數定義推出 若函式y f...

yx在x0處為什麼不可微函式yxx在x0處為什麼不可導

這個回答有問題,雖說一元函式可微必可導,但是題主明顯是 不理解微分定義和可微判定的關係,你直接說f x x 在x 0處不可導,這種東西,隨便一個學過高數的都懂,且答非所問 微分定義是 y a x x 即 lim y a x x 0 是否成立,x 0 後式相同 化簡上式即 lim y x a 0 由於...