1樓:太行人家我
首先要知道為什麼要用公式法分解式。公式液跡就是公共的式子———等式———公共檔汪的式子就是大家都知道的式子,那麼公式從哪而來?這是還得先說一說,因式分解,它是把乙個代數式。
分解成幾個因式的乘積,它是多項式乘法的相反過程。咱們行埋仔在做多項式乘法的時候,得到過許多公式,比如兩數和與兩數差乘積等於兩數的平方差。
乙個數的平方加上這個數與另乙個數的數的乘積的兩倍,再加上另乙個數的平方,就等於兩個數和的平方;兩個數的平方和減去它們乘積的兩倍就等於這兩個數差的平方;兩個數的和乘以這兩個數的平方和與返兩個數乘積,就得到這兩個數的立方和;兩個數的差乘以這兩個數的平方和與這兩個數的。
2樓:亞浩科技
1)提取公因式——如果多項式的各項有公因式,可 把這個公因式提到括號外面,將多項式寫成因式乘積的形 式,這種分解因式的方法叫做提取公因式法。
提取公因式法是因式分解的最基本、最常用的方法,它的理論依據就是乘法的分配律,能找出多項式各項的公 因式是這種方法的關鍵,並要注意養成首先作提公因式分解的習慣。
2)運用公式法——如果把乘法公式反過來,就可以用把某些多項式分解因式,這種分解因式的方法叫做運用公式法。
3)分組分解法——利用分組來分解因式的方法叫做分組分解法。
被分解的多項式中,如果項數超過三項,進行搜改因式分解時所採用的方法常是分組分解,一般來說,分組分解法有兩種型別:第一種是分組後各組有公因式,可以進一步提取公因式進行分解;第二種是分組後可以應用公司進行分解。
4)十字相乘法——藉助畫十字交行漏野叉線分解係數,從而把檔喊二次三項式分解因式的方法叫做十字相乘法。
3樓:老黃知識共享
公式法因式分解主要指:①完全段睜橡平方公式,如4ⅹ^2+4x十1=(2x+1)^2!早州②平方握旁差公式,如ⅹ^2-4=(x-2)(ⅹ2)
4樓:
因式分解的常用方法有提公因式法、公式法和分組分解法、十字相乘法等。
無論那種方法,若有公因式時先提公因式後再運用其它方法較為簡便。
在初中,公式法常用的公式有平方差公式:a^2-b^2=(a+b)(a-b)
完全平方公式:a^2+2ab+b^2=(a+b)^2或a^2-2ab+b^2=(a-b)^2
高中還有立方和差公式,和、差立方公式等。
如:am^2-an^2=a(m^2-n^2)=a(m+n)(m-n) (先提公因式a,再利用平方差公式)
x^4-2x^2y^2+y^2=(x^2-y^2)^2=(x+y)^2(x-y)^2 (先用完全平方公式,再用平方差公式)
5樓:李奧人嫋嫋娜娜
先提取公因式。在進行公式分解。
無公因式。就直接公式分解。注意公式的a與b。和冪次方。
公式法因式分解
6樓:帳號已登出
因式分解:公式法。能合併的同類項要合併。
7樓:荒漠般蒼涼
3^(2m+n_1)
3^m)^2 * 3^n * 3
a^2 * b * 3
不知道是不是你的意思,感覺你說的不清楚,如果不是你的意思,我表示很無奈。
公式法因式分解
8樓:帳號已登出
因式分解:公式法。能合併的同類項要合併。
用公式法因式分解
9樓:帳號已登出
因式分解:公式法。能合併的同類項要合併。
公式法分解因式
10樓:幽幽
2(a²-4)=2(a+2)(a-2)=2(a-2)²所以當a=2時,兩邊都等於0成立。
當a不等於2時,約分得a+2=a-2無解。
綜上a=0
用運用公式法因式分解
11樓:網際超人
xy的五次方-81x的五次方y
xy(y⁴-3⁴x⁴)
xy(y²+9x²)(y²-9x²)
12樓:劉傻妮子
xy的五次方-81x的五次方y,等於:
先提出公因式xy,於是還有y的4次冪-81x的4次冪。
y的4次冪-81x的4次冪,可以利用平方差公式,把y的4次冪當做y的平方的平方。
下面你就會了。
因式分解(提公因式法)用提公因式法分解因式
一般地,如果多項式的各項有公因式,可以把這個公因式提到括號外面,將多項式寫成因式乘積的形式,這種分解因式的方法叫做提公因式法。具體方法 當各項係數都是整數時,公因式的係數應取各項係數的最大公約數 字母取各項的相同的字母,而且各字母的指數取次數最低的 取相同的多項式,多項式的次數取最低的。例如 x y...
用公式法和因式分解法解x 2 6X 9 (5 2X) 2
用公式法和因式分解法解x x x x x x .化簡為x x 公式法。b ac x 知猛 b b ac a x b 衝猛散 b ac a 因式分解法。之一 配方法 x x x x x 散氏 得 x x 因式分解法。x x x x x x x x x x x x x x x 或x 因帆空式分解法 x ...
用乘法公式分解因式
1.4x 3 16xy 3 4x x 2 4y 3 2.2 1 2 a 2 1 2 4 a 2 1 2 2 a 2 a 3.3x y 2 x 3y 2 3x y x 3y 3x y x 3y 4x 2y 2x 4y 4 2x y x 2y 4.2x 2 2x 1 2 2 x 2 x 1 4 2 x ...