函式中含有絕對值如何用最簡單的方法去掉

2025-07-23 02:20:17 字數 2341 閱讀 7037

1樓:瘋狂的賢者

含絕對值的函式,其絕對值符號出現的方式無非以下三種情況。

整「絕」(函式式右邊整個加絕對值):y=|f(x)| 例如y=|x-1|;

x「絕」(函式式右邊純x處均加絕對值):y=f(|x|),例如y=|x|-1;

亂「絕」(函式式右邊雜亂無章地加絕對值):例如y=x2-2|x+1| -1

亂「絕」函式的影象,一般需要先化為分段函式,再畫圖。

整「絕」函式的影象,一般用翻折法畫圖,方法是「上留下翻」:

先畫y=f(x)影象,將x軸上方部分留著,將在x軸下方的影象以x軸為對稱軸翻折到x軸上邊去,即得 y=|f(x)|影象。

x「絕」函式的影象,一般用翻折法畫圖,方法是「右留翻左」:

先畫y=f(x)影象,將y軸右方部分留著,並將它以y軸為對稱軸翻折到y軸右邊去,即得 y=f(|x|)影象。

兩個或多個整「絕」的一次函式的和,有亂「絕」之嫌,當然可以先化為分段函式再畫圖之,但是,由於其影象是三段直線型(一條線段和二條射線)影象組成,可以用折點(拐點)作圖法:

先逐個找出每個絕對值的零點(區域性零點),再以此為橫座標算出相應的縱座標,得到若干個折點,並將諸折點連線成線段,然後在最左邊和最右邊的折點的兩邊,利用函式式得到各得到乙個輔助點,並連成射線。於是函式的影象大功告成。

怎樣去掉函式解析式中絕對值的符號

2樓:匿名使用者

分類討論,若絕對符號內為負,則新增負號並去掉絕對符號,若不為負(零或正)則直接去掉絕對符號。

3樓:匿名使用者

判斷絕對值內的到底是大於0還是小於0

4樓:匿名使用者

1.分類討論,分絕對值>0,絕對值<0等幾種情況。記得注意自變數的取值範圍。

2.特殊情況,定理直接對絕對值的取值範圍經行判斷。

3.有些題在題意中也有暗示,記得緊抓題意條件經行判斷。

怎樣去掉函式解析式中絕對值的符號函式中解析式中有

5樓:網友

可以利用所謂符號函式 sgn x。當x>0時, sgn x=1;當x=0時, sgn x=0;當x<0時, sgn x=-1。

於是 |x|=x*sgn x.

如果函式解析式中存在絕對值,要怎麼去除絕對值符號?

6樓:晏秀愛修橋

首先確定函式值域和定義域,然後分情況討論,去絕對值符號,取絕對值》0不變和絕對值<0整體加負號。

(f(x))"

兩種情況分析。

含絕對值的函式圖象怎麼畫啊 舉個例子

7樓:柔情西瓜啊

最根本的方法就是找絕對值的零點,然後消去絕對值,分段畫影象。

最簡單的比如y=|x|,顯然,絕對值內的零點是x=0,那麼你就分兩段來討論,x≤0和x>0,可得。

x≤0時的影象是y=-x,x>0時的影象為y=x,是個v字形。

8樓:網友

其實很簡單,首先,單獨列出絕對值部分的函式,然後,除去絕對值符號畫出此部分的影象,再把x軸以下的部分以x軸對稱做出來,得到絕對值部分的影象,最後,根據整個函式進行平移和疊加。

例如:f(x)=│x-3│+5。

首先,列出g(x)=│x-3│。畫出影象y=x-3。此影象中當x<3時,影象在x軸以下。

所以,把x<3部分以x軸作對稱,得到g(x)=│x-3│影象。最後,再在g(x)=│x-3│的影象基礎上,上移5,便得到了f(x)=│x-3│+5的影象。

不知解釋清楚了沒,如有疑問,請繼續追問。謝謝!)

9樓:黃盧愛

就是吧不加絕得值時的函式圖的負值部分影象對x軸對稱上去,正值部分不變。如y=!x !是對函式y=x 第三象限的負值影象,對稱上去就好。影象就是頂點在0,0的v字圖案。

10樓:網友

用文字里面的工具畫。。然後黏貼吧。

帶絕對值的函式怎麼解

11樓:網友

去掉絕對值,分別討論絕對值裡面的數字大於和小於零兩種情況,當大於零時取這個數,小於零時取這個數的相反數,得到兩個方程,然後求解。

帶絕對值的函式怎麼處理?

12樓:匿名使用者

分割槽間討論法?是不是叫這名字……高中畢業太久了忘記了 反正就是看區間。

13樓:網友

樓主您好,分類討論。

14樓:明朝的錦衣衛

分類討論,也可用圖象法。

如圖求極限,式子中含有絕對值怎麼處理

值的怎麼求極限?求過程和思路 我來答pasirris白沙 lv.16 2015 09 22 1 此類絕對值符號 modulus 問題,首先設法去除絕對值符號 2 本題是右極限,8 2x 2x 4 3 具體解答如下,如有疑問,歡迎追問,有問必答 4 若點選放大,更加清晰。檢視全部3個回答 相關問題 極...

如何怎樣解絕對值不等式含有絕對值的不等式怎麼解

絕對值不bai 等式的常見形式及解du法 絕對值不等式解zhi 法的基本dao思路是 去掉絕對值符回號,把它轉化為答一般的不等式求解,轉化的方法一般有 1 絕對值定義法 2 平方法 3 零點區域法。常見的形式有以下幾種。1.形如不等式 x 0 利用絕對值的定義得不等式的解集為 a a a 0 它的解...

絕對值不等式的解法含有絕對值的不等式怎麼解

9月17日 12 03 絕對不等式的解法 解絕對不等式的基本思路 去掉絕對值符號轉化為一般不等式,轉化方法有 1 零點分段法 2 絕對值定義法 3 平方法 例如 解不等式 1 3x 5 1 2 x 1 2x 1 3 x 1 x 3 5 解 1 由絕對值定義得 3x 5 1或3x 5 1 x 2或x ...