二階微分方程特解怎麼求的呀謝謝,微分方程的特解怎麼求

2021-05-22 13:24:50 字數 4224 閱讀 7978

1樓:匿名使用者

r2+r-6=0

(r+3)(r-2)=0

r1=-3,r2=2

λ+wi=2+2i

不是特徵根

所以特解形式為

e^2x(acos2x+bsin2x)

2樓:陽光穿林

床上不好寫,告訴你大體思路吧,後面sin乘cos用倍角公式化為sin2x然後用求特徵根,然後用課本上公式就做出來了

微分方程的特解怎麼求

3樓:安貞星

二次非齊次微分方程的一般解法

一般式是這樣的ay''+by'+cy=f(x)

第一步:求特徵根

令ar2+br+c=0,解得r1和r2兩個值,(這裡可以是複數,例如(βi)2=-β2)

第二步:通解

1、若r1≠r2,則y=c1*e^(r1*x)+c2*e^(r2*x)

2、若r1=r2,則y=(c1+c2x)*e^(r1*x)

3、若r1,2=α±βi,則y=e^(αx)*(c1cosβx+c2sinβx)

第三步:特解

f(x)的形式是e^(λx)*p(x)型,(注:p(x)是關於x的多項式,且λ經常為0)

則y*=x^k*q(x)*e^(λx) (注:q(x)是和p(x)同樣形式的多項式,例如p(x)是x2+2x,則設q(x)為ax2+bx+c,abc都是待定係數)

1、若λ不是特徵根 k=0 y*=q(x)*e^(λx)

2、若λ是單根 k=1 y*=x*q(x)*e^(λx)

3、若λ是二重根 k=2 y*=x2*q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)

f(x)的形式是e^(λx)*p(x)cosβx或e^(λx)*p(x)sinβx

1、若α+βi不是特徵根,y*=e^λx*q(x)(acosβx+bsinβx)

2、若α+βi是特徵根,y*=e^λx*x*q(x)(acosβx+bsinβx)(注:ab都是待定係數)

第四步:解特解係數

把特解的y*'',y*',y*都解出來帶回原方程,對照係數解出待定係數。

最後結果就是y=通解+特解。

通解的係數c1,c2是任意常數。

拓展資料:

微分方程

微分方程指描述未知函式的導數與自變數之間的關係的方程。微分方程的解是一個符合方程的函式。而在初等數學的代數方程,其解是常數值。

高數常用微分表

唯一性存在定一微 分程及約束條件,判斷其解是否存在。唯一性是指在上述條件下,是否只存在一個解。針對常微分方程的初值問題,皮亞諾存在性定理可判別解的存在性,柯西-利普希茨定理則可以判別解的存在性及唯一性。

針對偏微分方程,柯西-克瓦列夫斯基定理可以判別解的存在性及唯一性。 皮亞諾存在性定理可以判斷常微分方程初值問題的解是否存在。

4樓:匿名使用者

微分方程的特解步驟如下:

一個二階常係數非齊次線性微分方程,首先判斷出是什麼型別的。

然後寫出與所給方程對應的齊次方程。

接著寫出它的特徵方程。由於這裡λ=0不是特徵方程的根,所以可以設出特解。

把特解代入所給方程,比較兩端x同次冪的係數。

舉例如下:

5樓:耐懊鶴

∵齊次方程y''-5y'+6y=0的特徵方程是r2-5r+6=0,則r1=2,r2=3

∴齊次方程y''-5y'+6y=0的通解是y=c1e^(2x)+c2e^(3x) (c1,c2是積分常數)

∵設原方程的解為y=(ax2+bx)e^(2x)

代入原方程,化簡整理得-2axe^(2x)+(2a-b)e^(2x)=xe^(2x)

==>-2a=1,2a-b=0

==>a=-1/2,b=-1

∴原方程的一個解是y=-(x2/2+x)e^(2x)

於是,原方程的通解是y=c1e^(2x)+c2e^(3x)-(x2/2+x)e^(2x) (c1,c2是積分常數)

∵y(0)=5,y'(0)=1 ==>c1+c2=5,2c1+3c2-1=11

∴c1=3,c2=2

故原方程在初始條件y(0)=5,y'(0)=1下的特解是y=3e^(2x)+2e^(3x)-(x2/2+x)e^(2x)

即y=(3-x-x2/2)e^(2x)+2e^(3x).

6樓:匿名使用者

微分方程的特解怎麼求?你是80我也不會。有時間我告訴你。

7樓:匿名使用者

這個提示非常難的,我覺得具有這方面的學生或者是老師幫來解答,知道你是學生還是什麼?如果你是學生的話,你可以問以前老師,不要不好意思的

常微分方程的二階非齊次線性的特解是怎麼求出來的,二階齊次微分方程求通解是根據什麼?通俗一點,謝謝!

8樓:匿名使用者

考慮平面的表襲

示方法ax+by+cz=d

如果(x1,y1,z1),(x2,y2,z2)是齊bai次方程du的兩個線性無關解zhi,(x0,y0,z0)是非齊次方程的解,那麼平面可dao表示為

(x,y,z)=c1(x1,y1,z1)+c2(x2,y2,z2)+(x0,y0,z0)

即不共線的兩個向量和空間中的一個點可以確定一個平面這樣,令

(x,y,z)=(x,x',x'')

微分方程方程a(t)x+b(t)x'+c(t)x''=d(t)的解為(x,x',x'')=c1(x1,x1',x1'')+c2(x2,x2',x2'')+(x0,x0',x0'')

即x=c1x1+c2x2+x0

所以n個線性無關的解可以表示一個n階線性方程的通解

一個微分方程求特解的題,請給出詳細步驟,謝謝!

9樓:小肥肥啊

∵齊次方程y''-5y'+6y=0的特徵方程是r2-5r+6=0,則r1=2,r2=3

∴齊次方程y''-5y'+6y=0的通解是y=c1e^(2x)+c2e^(3x) (c1,c2是積分常數)

∵設原方程的解為y=(ax2+bx)e^(2x)

代入原方程

==>a=-1/2,b=-1

∴原方程的一個解是y=-(x2/2+x)e^(2x)

於是,原方程的通解是y=c1e^(2x)+c2e^(3x)-(x2/2+x)e^(2x) (c1,c2是積分常數

∴c1=3,c2=2

故原方程在初始條件y(0)=5,y'(0)=1下的特解是y=3e^(2x)+2e^(3x)-(x2/2+x)e^(2x)

即y=(3-x-x2/2)e^(2x)+2e^(3x)。

二階常係數齊次線性微分方程特解是怎麼得到的 150

10樓:愛佳佳的恐龍

標準形式 y′′+py′+qy=0

特徵方程 r^2+pr+q=0

通解兩個不相等的實根:y=c1e^(r1x)+c2e^(r2x)兩根相等的實根:y=(c1+c2x)e^(r1x)共軛復根r=α+iβ:

y=e^(αx)*(c1cosβx+c2sinβx)

標準形式 y''+p(x)y'+q(x)y=f(x)

11樓:匿名使用者

有兩種方法:

第一種是套公式待定係數:方程右邊如果是exp(ax)(am1(x)cosx+bm1(x)sinx),則特解的形式為exp(ax)(cm(x)cosx+dm(x)sinx). 其中am1指次數為m1的x的多項式,m=max.

將該形式代入方程,確定出cm和dm。

這種方法技術含量低,普遍性差。

第二種是laplace變換:將方程兩邊做laplace變換,由變換公式l[y']=pl[y]+y(0),微分方程將變成代數方程,解出l[y],再將其反演,得到y

這種方法技術含量高,普遍性好,並且可以直接得到完整解,而不只是特解。

12樓:匿名使用者

特徵根方程

假設解是e^(r*t)

r是待定常數

代入可以得到

(r^2+k^2)e^(r*t)=0

r^2+k^2=0

r=ki,-ki

然後由尤拉公式

e^(ki)=cosk+isink

e^(-ki)=cosk-isink

x=a(cosk+isink)+b(cosk-isink)整理即得

x=c1 cosk + c2 sink

然後任取一個為0,一個為1即可

關於二階常係數非齊次線性微分方程求特解y形式的題目我非常的

性非來齊次微分方程的通 解 對應齊自次微分方bai程的通解du 特解求解過程大致分以下兩步進行zhi dao 1 求對應齊次微分方程y y 0.1 的通解,方程 1 的特徵方程為r 2 1 0,則r 1,1 從而方程 1 的通解就是y ce x de x c d為待求量,這裡還需用到兩個邊界條件,不...

關於二階常係數非齊次線性微分方程求特解y形式的題目我非常的

1.一般求法是先求齊次方程的通解,然後再根據非齊次項的特點求特解.因此,對於你給的練習題,先得出通解為y1 e x,y2 e 2x 然後根據3x 2設一特解為y ax b,代入得a 3 2,b 5 4於是y 3x 2 5 4故通解為y c1 e x c2 e 2x 3x 2 5 42.特解的形式與自...

高數微分方程通解特解,微分方程的特解怎麼求

因表示式為cosx 設待定特 解為y acosx bsinx 這是固定用法,a,b為待定係數 代入微分方程y y cosx得 acosx bsinx acosx bsinx cosx 即,回答 2acosx 2bsinx cosx比較係數得到 2a 1,2b 0 特解為y 1 2 cosx 微分方程...